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ABSTRACT Segmentation of apparently continuous
movement has been reported for over a century by human
movement researchers, but the existence of primitive sub-
movements has never been proved. In 20 patients recovering
from a single cerebral vascular accident (stroke), we identi-
fied the apparent submovements that composed a continuous
arm motion in an unloaded task. Kinematic analysis demon-
strated a submovement speed profile that was invariant
across patients with different brain lesions and provided
experimental verification of the detailed shape of primitive
submovements. The submovement shape was unaffected by its
peak speed, and to test further the invariance of shape with
speed, we analyzed movement behavior in a patient with
myoclonus. This patient occasionally made involuntary shock-
like arm movements, which occurred near the maximum
capacity of the neuromuscular system, exhibited speed pro-
files that were comparable to those identified in stroke
patients, and were also independent of speed.

Despite almost a century of research corroborating Wood-
worth’s (1) proposal that continuous movement is composed of
submovements, objective quantification of the form of sub-
movements has not been forthcoming. Hence this appealing
hypothesis, that primitive submovements constitute a ‘‘build-
ing block’’ of more complex movements, remains unproved.
For example, Crossman and Goodeve (2) expanded Wood-
worth’s model while attempting to explain Fitts’ Law (3) and
considered two models: a continuous-time feedback control of
velocity for a linear dynamic model, and alternatively, building
on Woodworth’s model, an iteractive-correction submovement
model. Their experiments suggested that a feedback-velocity
control model could not explain the discontinuities and ripples
observed in their wrist-rotation trajectories, whereas the sub-
movement model could. Therefore, they proposed that a single
displacement shape, occurring periodically and scaled appro-
priately, could account for complex movements. They assumed
submovements with displacement vs. time in the shape of an
error function (erf). Later, the periodicity aspect of Crossman
& Goodeve’s iteractive-correction submovement model was
proven to be unacceptable (4, 5).

Nevertheless, Crossman and Goodeve’s suggestion of a
single submovement shape scaled and dilated to describe the
continuous movement is one of the earliest suggestions that
movement segments have invariant characteristics and consti-
tute the primitives or building blocks of more complex move-
ments. Their suggestion of an error function to describe the
segment displacement was followed by others such as B-
Splines, minimum jerk, minimum snap, minimum crackle,

minimum time, minimum energy, and minimum acceleration
(6–9).

Experimental results for point-to-point movements in two
and three dimensions further support the segmentation hy-
pothesis. For example, when Abend et al. (10) required
subjects to draw semicircles in the horizontal plane, the hand
path usually had a segmented appearance, as if the subjects
were trying to approximate the semicircle by a small number
of low-curvature elements. Flash and Henis (11) reported
experiments on movements in two dimensions that showed
how segments were blended. In their experiment, the arm
trajectory modification in response to an unexpected target
displacement was obtained by superimposing a new plan for
moving between the first and second target onto the ongoing
movement. The initial arm movement was not aborted but
added to the movement resulting from the new plan. Milner
(12) suggested that the iterative-correction submovement
model proposed by Woodworth holds for three-dimensional
movement. His experiment consisted of a series of peg-
insertion tasks. Consistent with Woodworth and Crossman &
Goodeve’s models, for smaller hole sizes, the number of
apparent submovements increased. Observing that the initial
part of subjects’ movement velocity profiles was highly repeat-
able, he proposed to identify submovement kinematics by
using that data to construct a template for the acceleration
phase. For the deceleration phase, he used data from the
fastest movements, which had the lowest accuracy constraints
and which appeared to be free of submovements. This ap-
proach constitutes an assumption that point-to-point move-
ments with minimal accuracy requirements are executed as a
single ‘‘submovement’’ and although this hypothesis is appeal-
ing, it remains unproven.

Similar observations have been reported in the field of child
psychology and development. Von Hofsten and Lindhagen
(13–15) ran a series of experiments among infant subjects
12–24 weeks old until they become ‘‘mature’’ babies at 36
weeks old. The task consisted of reaching for a moving
multicolored ‘‘wobbler.’’ The results suggested that movement
is composed of an ‘‘initial impulse’’ followed by a sequence of
finer adjustments (similar to Woodworth’s ‘‘initial impulse and
current control’’) and that with maturation, these submove-
ments blended into a single segment that resembled adult
movements. Lee et al. (6) in adults and Berthier (17) in infants
used minimum-jerk velocity profiles to decompose these
classes of reaching movements. A more complete overview of
the submovement literature can be found elsewhere (18).

Although these and other similar experimental observations
suggest that submovements are ubiquitous, proof of their
existence and detailed quantification of their form have been
elusive. The latter is important because if the submovement
shape was known (e.g., the time profile of any measured
variable such as velocity), then decomposition to extractThe publication costs of this article were defrayed in part by page charge
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submovements from a continuous-movement record would be
feasible; without it, the problem is indeterminate (a ‘‘classical’’
example of a hard inverse problem) as any compactly sup-
ported function f(x) can be approximated with arbitrary pre-
cision in the L2-sense (mean-squared convergence) by a
weighted sum of ridge functions or radial basis functions
(19–21). Thus, any of an infinite set of candidate submovement
shapes could fit with little objective basis to choose between
them.

One way to resolve this problem would be to observe the
shape of a submovement in isolation. A unique opportunity to
do so arose from our ongoing work studying the feasibility of
applying robotic technology to assist neurological recovery
(22–24). Kinematic records of the arm movements of patients
recovering from a focal brain injury (stroke) showed compel-
ling evidence for the first time that early post-stroke recovered
motions are composed of isolated segments; and that these
segments become progressively more blended or overlapped as
recovery proceeds. Fig. 1A shows an initially hemiplegic
patient’s first successful attempt to draw a circle. Fig. 1A Left
shows a plan view of the patient’s hand path; Fig. 1A Right
shows the movement’s speed vs. time. The speed profile has the
appearance of a sequence of pulses, dropping nearly to zero
between adjacent peaks, suggesting that the task (to draw a
circle) is being executed as a sequence of submovements. More
important, at this early stage of recovery, there is minimal
overlap of submovements. As recovery continues, these dis-
connected submovements appear to coalesce (see Fig. 1A
Lower). For comparison, Fig. 1B shows the hand path and
speed profile of an unimpaired subject performing the same
task. Although the circle appears to be drawn with a single
continuous movement, the speed profile still suggests segmen-
tation (although less pronounced or more overlapped).

Our observation of discontinuous movement behavior in
recovering stroke patients prompted us to test whether the
kinematic records would permit quantification of the shape of
a submovement in isolation. Like prior researchers, we could
not objectively isolate primitives from continuous movements
made by unimpaired subjects, but movements made by stroke
patients early in recovery reveal their elementary components
more clearly. This affords a unique opportunity: if, as postu-
lated, submovements are a basic feature of human motor
behavior, then the ‘‘signature’’ shapes of submovements may
be identifiable by straightforward analysis of the movements
made by stroke patients early in recovery.

METHODS

We examined the speed profiles of 20 consecutive patients with
acute hemiparesis caused by a single computer tomography-
verified cerebral vascular accident (stroke) in the cortical or
subcortical motor area (clinical details can be found in refs. 22
and 23) and of 1 patient who had action myoclonus after a
cardiac arrest and global cerebral ischemia. All studies were
performed with the approval of the Massachusetts Institute of
Technology Committee on the Use of Humans as Experimen-
tal Subjects and the Burke Rehabilitation Hospital Human
Subject Committee. Written consent was obtained from all
subjects or their designated guardians.

All patients were asked to perform a visually evoked and
visually guided planar unloaded task on MIT-MANUS, a robot
designed for clinical neurological applications (25). They
moved the robot end-effector from its initial position to a
target in a simple point-to-point reaching movement. Out-
board targets were at fixed positions equally spaced around a
horizontal circle of 10-cm diameter and were presented in a
clockwise fashion starting at the 12:00 position. The inner
‘‘home’’ target was presented after each of the outboard
targets. Fig. 2 shows a representative raw data record of a
movement of an initially hemiplegic patient during the initial
stages of recovery. Left shows a plan view of the patient’s hand
path; Right shows the movement’s speed.

Because the apparent submovements in this data appeared
to vary in magnitude, duration, and time of incidence, we
identified submovement kinematics based on a working hy-
pothesis that the speed profile, s(t), of a continuous movement
is composed of a finite sum of identically shaped submove-
ments with speed profile, f( ), which may be dilated in duration,
translated in time, and modulated in magnitude, i.e.,
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where di, ti, and mi are the dilation, translation, and modula-
tion parameters, respectively, for each submovement. The first
two successful attempts to hit the target were selected for each
of the 20 stroke patients enrolled in the study. To remove the

FIG. 1. (A) Patient A drawing clockwise single circles starting and
ending at the 9:00 position. Patients wear a hand-holder that connects
their palm to the robot end-effector and an elbow support. Patients
were instructed to draw a smooth circle, while their hand was in view.
No explicit feedback was provided. (B) Unimpaired subject drawing
clockwise single circle starting and ending at the 9:00 position. Subject
grasped the robot handle with the palm and was instructed to draw a
smooth circle, while the hand was in view. No explicit feedback was
provided.

FIG. 2. Kinematic data of patient A in a point-to-point movement
without time constraint. (Left) The hand displacement in the hori-
zontal plane. (Right) Hand speed.
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effects of time-translation, the complete speed record was
copied and time-shifted to align all peaks above an arbitrary
threshold (20% of the highest peak) to the same center. To
remove the effects of magnitude modulation, the peaks were
scaled to unit magnitude. Only data up to the first reversal (i.e.,
local minima adjacent to the local maximum that defines the
peak) were retained.i

Although the typical range of submovement durations in our
data was 0.25–1 sec, some of the submovements had compa-
rable durations, and the interpolation and decimation opera-
tions required to account for time-dilation by rescaling the
time axis would have introduced unacceptable numerical
errors. Instead, we chose to fit the submovement speed profile
to a density function by using a standard procedure that
preserved the shape and normalized the time duration to the
[0, 1] interval. Specifically, for each attempt to hit the target,
the data resulting from eliminating translation and modulation
effects were averaged. Each of the resulting curves was fitted
to a b-function by using standard techniques (26). The b-func-
tion was chosen for convenience because different values of its
two parameters yield a wide variety of shapes, including
symmetric, skewed, unimodal and bimodal, as illustrated in
Fig. 3. Because 1 of our 20 patients did not recover any
voluntary movement in any direction, this resulted in 38
b-functions, each fitted to a curve obtained from an average of
4.5 peaks (174 peaks total).

Surprisingly, we found that submovement speed profiles
were remarkably similar even though neurological damage was
not. Fig. 4 shows the fitted b-function mean (p) and standard
deviation (ps) for all movements analyzed from all patients.
The submovement speed profiles were highly stereotyped, as
indicated by the consistency of the b-function mean and
standard deviation (p 5 0.47 6 0.04 and ps 5 0.18 6 0.02). A
b-function with these values is nearly symmetric and mesokur-
tic, with skewness 5 0.07 and kurtosis 5 20.62.

Fig. 4 also displays all 38 b-functions (thin dashed) along
with the ensemble best-fit b-function with p 5 0.47 and ps 5
0.18 (solid line), graphically illustrating the consistency of the

submovement speed profiles. For comparison, a Gaussian
profile with a standard deviation equal to half the width of the
ensemble best-fit b-function at the 0.67 level and a minimum-
jerk profile with the same duration are also shown, the peaks
of all profiles being centered at the same location. The
ensemble best-fit b-function, Gaussian, and minimum-jerk
profiles are quite similar, the differences among them being
smaller than the scatter of the set of b-functions. This result
demonstrates that, given the variability of the data, other
mathematical functions (which may be analytically more con-

iUsing the speed copies until the first reversal, i.e., the local minima
adjacent to the local maximum that defines the peak, is an adequate
approach if the speed drops to zero. Otherwise, the approach
introduces a bias toward less platykurtic shapes. To check the influ-
ence of this bias, we repeated the fitting procedure using speed copies
until half the time duration between the speed peak and the first
reversal if that did not occur near zero (which suggested ‘‘leakage’’
from adjacent submovement), i.e., we continued to use the complete
speed copy until the first reversal, if it occurred near zero, otherwise
we used only half the time duration between the speed peak and the
first reversal. The resulting new set of 38 b-functions were very similar
to those observed from the original procedure. A one-way ANOVA
showed that the variance, skewness, and kurtosis were not statistically
different at the 0.01 level. We therefore concluded that this bias was
negligible for our data.

FIG. 3. Examples of normalized b-density function for different
values of r and s. The figure shows that the proper choice of parameters
leads to a wide variety of shapes, e.g., symmetric, skewed, unimodal,
bimodal.

FIG. 5. Assessment of the ensemble best-fit b-function. (Upper) An
example of an individual speed profile (solid line) compared with the
ensemble best-fit b-function (dashed line). (Lower Left) The histogram
of the slope of the principal eigenvector of the covariance matrix
between the individual speed profiles and the ensemble best-fit
b-function. The histogram on the Lower Right shows the correlation
coefficient between the individual speed profiles and the ensemble
best-fit b-function.

FIG. 4. Normalized b-density function parameters for the stroke
patients. The Insets show the parameters (mean p and standard
deviation ps) for the b-density function, which were estimated from the
first two recorded movements for each point-to-point task from the
stroke patients. The figure shows the ensemble best-fit b-function
superimposed on each of the 38 individual b-functions, as well as a
Gaussian with standard deviation equal to half the width of the
ensemble b-function at 0.67 and a minimum-jerk curve with the same
normalized displacement and duration. The peaks of all curves are
centered at the same point.
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venient) could describe the submovement kinematics equally
well.

To assess whether our data analysis procedure properly
accounted for any variation of submovement shape with
duration, we compared individual submovements (all 174
speed profiles) to the ensemble best-fit b-function. Fig. 5 Upper
compares a representative individual speed profile to the
ensemble best-fit b-function. Fig. 5 Lower Left shows a histo-
gram of the slopes of the principal eigenvector of the covari-
ance matrix computed between each of the individual curves
(174 speed profiles) and the ensemble best-fit b-function; this
measure is centered at 1.03 with a standard deviation of 0.14.
To assess whether our data analysis procedure captured the
shape of the submovement, Fig. 5 Lower Right shows a
histogram of the correlation coefficient between each speed
copy and the ensemble best-fit b-function (174 speed profiles).
The median correlation coefficient is 0.95, further evidence of
the consistency of our data.

The experimental results summarized in Fig. 4 were ob-
tained from stroke patients during the early stages of recovery.
They had different cortical or subcortical lesions, and their
movements were typically slow. A single patient with posthy-
poxic-action myoclonus gave us the opportunity to investigate
rapid movements.** In contrast to stroke, myoclonus results in
brief, involuntary shock-like movements at nearly the maxi-
mum capacity of the neuromuscular system. Fig. 6 shows the
range of peak speeds observed for the myoclonus (63 speed
profiles) and stroke patients (174 speed profiles). For the
myoclonus patient, speed peaks above 0.3 m/sec were normal-
ized to unit magnitude and time-shifted to align their peaks. As
before, only data up to the first reversal were retained, and the
resulting curves were fitted to a b-function, revealing a highly
repeatable speed profile with p 5 0.52 6 0.04 and ps 5 0.17 6
0.02. (A b-function with these values is nearly symmetric and
mesokurtic with skewness 5 20.05 and kurtosis 5 20.56.) This
speed profile is shown in Fig. 7 along with minimum-jerk and
Gaussian profiles fitted as before. Considering that the shock-
like movements of the myoclonus patient were an order of
magnitude faster than those of the stroke patients, so that the
effects of arm inertia and muscular dynamics may distort the
actual movement from that commanded by the nervous sys-
tem, a direct statistical comparison between these two sets of
data should be made with caution. Nevertheless, a one-way

ANOVA showed that the variance and kurtosis were not
statistically different at the P 5 0.01 level. The skewness was
significantly different, but the speed profiles were still quite
similar: the sum of the squared differences between the
profiles was 0.4% of their area.

DISCUSSION

Studying the kinematics of movements made by patients with
neurological injury presents a unique opportunity to capture
‘‘isolated’’ exemplars of submovements, presumably because
the motor control processes that would normally coordinate
and overlap these segments are disrupted. Our results show
that the first movements made by recovering hemiplegic stroke
patients were clearly segmented. Despite the wide range of
peak speeds observed in those segments, they exhibited a
remarkably invariant speed-vs.-time profile. This profile was
also strikingly similar to that observed during the involuntary
shock-like myoclonic movements of a post-cardiac arrest pa-
tient, despite an order-of-magnitude difference in their peak
speeds. Indeed, taken together, the observed range of peak
segment speeds for myoclonus and stroke patients covers the
whole spectrum of human arm movement and supports the
robustness of the finding. The remarkable invariance we
observed suggests that submovements may be represented in
terms of their kinematics. This would imply that they should
remain invariant under different loading conditions, but our
data cannot address this question as they were obtained under
comparable loading conditions. Whether submovements re-
f lect some sort of kinematic strategy or stereotypic neural
activation pattern or neuromuscular force command remains
to be determined. Nevertheless, the identified speed profile
was remarkably similar to that observed when unimpaired
human subjects made simple point-to-point unconstrained
reaching movements in the horizontal or vertical plane at
different speeds and also at different handheld loads (27–29,
9). These observations suggest that we have identified the
kinematic profile of a primitive unit action during unloaded
movements. This temporal motor primitive may be analogous

**Posthypoxic-action myoclonus is a temporary form of myoclonus
typically occurring after anesthetic accidents and myocardial infarc-
tion resulting in coma and severe global forebrain ischemia. See
Weiner, W. J. & Lang, A. E. (1989) Movement Disorders: A
Comprehensive Survey (Futura, Mount Kisco, NY).

FIG. 6. Histogram of the individual speed profiles for stroke and
myoclonus patients. The stroke patients’ movements were typically
slow (left distribution), whereas the myoclonus patient’s involuntary
shock-like movements were fast (right distribution), near the maxi-
mum capacity of the neuromuscular system. FIG. 7. Normalized b-density function parameters for the myoc-

lonus shock-like movements. The Insets show the parameters (mean p
and standard deviation ps) for the b-density function, which were
estimated from recorded movements from the myoclonus patient
during point-to-point task. The figure shows the ensemble best-fit
b-function superimposed on each of the 14 individual b-functions, as
well as a Gaussian with standard deviation equal to half the width of
the ensemble b-function at 0.67 and a minimum-jerk curve with the
same normalized displacement and duration. The peaks of all curves
are centered at the same point.
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to the visual primitives (edges, lines, etc.) recognized by the
brain’s visual processing system (30).

The fact that a common profile was identified from the
movements of a pool of patients with a disparate size and
severity of focal ischemic or hemorrhagic injuries to the cortex,
subcortex, pons, and basal ganglia brain suggests that these
structures do not generate the submovement shape. Although
we cannot rule out the possibility that the residual function of
these damaged structures is sufficient to generate submove-
ment kinematics, our results imply that the primitive submove-
ment emerges from deeper or distal structures in the nervous
system, i.e., the remaining undamaged brain and brain stem,
cerebellum, or spinal cord.

In conclusion, to our knowledge, our data provides strong,
objective support for the conjecture made in the past by many
other motor control researchers that a repertoire of movement
primitives, each with a bell-shaped speed profile, constitute
fundamental building blocks of complex motions. This precise
mathematical characterization of submovement kinematics
provides the key information to make it possible to deconvolve
continuous movements objectively and reliably into their com-
ponent submovements. That is, our result changes a ‘‘hard
inverse problem’’ into a straightforward filtering problem and
may contribute to a deeper understanding of the motor system,
with important applications for neuroscience, neurorehabili-
tation, and robotics.

This work was supported in part by National Science Foundation
Grant 8914032-BCS and the Burke Medical Research Institute.
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